
Flux Fi le Primer

!

FLUX FILE PRIMER

OR: HOW I LEARNED TO STOP WORRYING AND LOVE THE FLUX

!
!

Contents!

Overview! 2!
Major Steps in the Simulation Chain:! 2!
Additional Complications:! 3!

Primary Results From The Beamline Simulation! 3!

Generating “gsimple” Files! 3!

File Handling in ART/GENIEHelper! 4!

Representative File Samples! 5!

Bibliography! 6

R o b e r t H a t c h e r • F N A L / C D

!
Overview!

The simulation of neutrino experiments is significantly different from other HEP physics exper-
iments (both fixed target and collider) because of the complications introduced by the complex
means used to generate a source of neutrinos. The spectrum of neutrinos is not mono-energetic,
nor well collimated (which has effects that need to be accounted for in any near detector). !

Major Steps in the Simulation Chain:!

• The source of protons (NuMI or Booster) is simulated [this is generally trivial]!

• The physics of protons and their secondaries impacting the target and beamline is simulated.
The decays of hadrons and muons that give rise to one or more neutrinos produced by the
beamline is recorded in files commonly, but misleadingly, referred to as “flux files” . These 1

decays are normally sampled to suppress some of the low energy decays (with remaining en-
tries tagged with an accompanying importance weight) to save space.!

• To be used by the detector simulation, these “dk2nu” files must be interpreted to produce in-
dividual neutrino “rays” in the reference frame of the particular detector. As well as dealing
with the importance weight, this involves a calculation arising from relativity that gives the
neutrino’s energy and weight for forcing the decay to go through a particular point . !2

• The results of this de-weighting process can either directly be embedded in the event genera-
tor, or handled as a separate step and the output written to a simplified format file . Such 3

files, once made, make further steps more efficient, but are relevant for only one detector loca-
tion. The trade-off on making this separate might depend on which detector is being simulat-
ed and as well as concerns about information loss in the intermediate step.!

• A representation of the detector geometry is exposed to neutrino “rays” and the physics of
neutrino interactions is simulated which give rise to particles leaving a struck nucleus. This is
referred to as the “event generator” stage (e.g. GENIE).!

• Finally a simulation of the physics of particle propagation in the detector (e.g. Geant4) and the
detector’s response is made, yielding the equivalent of raw data from a real DAQ system.
Some of these step may or may not be combined with event generator step.!

F l u x F i l e P r i m e r ! A N e u t r i n o P h y s i c i s t ’ s Vi e w !

�2

 In this document we will refer to these as “dk2nu” files which is the up-and-coming format for these files; older 1

variants might refer to them as “g4numi”, “g4mnv” (Minerva), “g4lbne” or “flugg” files. Even there there are incom-
patible variants.

 For the GENIE neutrino event generator the code that does this is an instance of a “flux driver”.2

 One common type of resulting de-weighted files are called GSimpleNtpFlux files, or “gsimple” files. GENIE code 3

that reads this format of files is a different instance of a “flux driver”.

https://indico.fnal.gov/getFile.py/access?contribId=4&resId=0&materialId=slides&confId=7599

Additional Complications:!

Combining the simulation of the beamline and the detector would be computationally impracti-
cal, so the output of the beam simulation must be written out in some form. Besides the two
flavors of files (e.g. “dk2nu” and “gsimple”) additional combinatorics arise from variations on:!

• Changes in the beamline geometry (e.g. target construction, relative placement of beamline
elements) and parameters that control the magnetic properties (e.g. horn current). These can
arise from differences in design vs. built, studies to investigate same, or simply standard
changes in operating parameters.!

• Fundamental differences in the underlying beamline simulation. There are currently two
competing frameworks in use: FLUGG and Geant4. Within Geant4 there are different options
for how this physics is simulated (“physics lists”) that affect the fidelity of the simulation.!

• For use by the on-axis detectors one can make additional cuts during “dk2nu” generation that
suppress decays that result in neutrinos that are not detectable by the detector, but off-axis de-
tectors need to keep those decays (“lowth” files).!

Unfortunately all attempts to impose a standardized nomenclature for referring to different fea-
tures have been subject to historical vagaries, subverted or partially ignored, so external refer-
ences (or even some herein) might be inconsistent. !

Primary Results From The Beamline Simulation!
The “dk2nu” files contain the information about neutrinos that arise from decays of hadrons
and muons in the beamline. The details of what is store is documented elsewhere (link goes
here). They hold sufficient information about the kinematics of their ancestry that they can be
re-weighted for different locations. The new “dk2nu” format significantly expands upon, as
well as unifying the naming conventions of, most of the previous formats (e.g. the basic “flugg”
and “g4numi” formats). Scripts exist to convert the older formats to the “dk2nu” files, though
that process necessarily can’t fill in the pieces that weren’t record. Newer versions of beamline
simulations will write this format directly. It follows that such files will be larger than older
files.!

Generating “gsimple” Files!
The process of de-weighting “dk2nu” (or equivalent) files to individual neutrino rays can be
computationally expensive, especially for off-axis detectors (i.e. NOvA, or uBooNE viewing the
NuMI beam). Scripts exist to convert files of decays to “gsimple” format (link goes here). !

The size and number of “gsimple" files generated from a set of “dk2nu” files is tunable when
they are being generated. Each file represents the neutrinos rays traveling through a “flux win-
dow” for a given number of protons-on-target (POTs). The size of the flux window might be
chosen differently even for the same detector location depending on the desire to use the file to
generate events in the rock surrounding the detector proper.!

F l u x F i l e P r i m e r ! A N e u t r i n o P h y s i c i s t ’ s Vi e w !

�3

File Handling in ART/GENIEHelper!
The majority of the FNAL neutrino experiments (though notably not Minerva or MINOS) are
using the ART framework for their offline code. Each of these makes use of a shared “nusoft”
code (GENIEHelper) to interface the GENIE event generator to the ART framework. The liquid
argon (LArSoft) and NOvA experiments use different ART modules to format the results into
their output files, but the basics of configuring GENIE are shared.!

One aspect of this GENIEHelper code is how it handles flux files; in GENIEHelper this is com-
mon to both the handling of “dk2nu” and “gsimple” files. The way the code currently works
(subject to revision) is to be given a pattern, and implicitly a set of top-level directory paths
(stems). The code prepends each of the stems to the pattern, uses the standard C library code
‘glob’ to resolve the wildcards into a list of files, and accumulates a list of all potential files. !

The GENIEHelper code then (optionally) randomizes the list of potential files, which is useful
for adding entropy to the simulation. It then walks down the list of files using ROOT’s gSys-
tem->GetPathInfo to determine file size (which for normal files uses ‘stat’), accumulating a list
of files to actually use until it reaches a user defined limit (default 2000MB).!

Note the use of ‘glob’ here currently precludes the use of alternative protocols that do not look
like ordinary files. This is generally fine because the code will run through the entries in the
files sequentially fast enough and often more than once, so that it would be detrimental to get
this data on the fly from a non-local source. Network reads of the data would be very ineffi-
cient, with additional latency as reading comes in small chunks for each request of an entry and
the potential for re-reading entries when each pass through the files exhausts the data.!

Future alternatives might involve:!

1. Handle non-direct file protocols simply by bypassing all this code and taking the list of files
as is. This would require tacking onto the .fcl file the explicit list of files for each job. It is
presupposed (but not verified) that all the code could handle non-direct file protocols if the
glob/stat bits were bypassed. This moves the selection logic out of GENIEHelper into some-
thing that appends to the .fcl file. The .fcl files parameter is an array, so the entries don't
have to be wildcarded, one can list them all explicitly.!

2) Write some protocol aware alternative to the glob/stat issue (GetPathInfo to determine file
size might work as is (needs to be checked) -- but 'glob' is undoubtably doesn't) into GE-
NIEHelper.!

The first (where one makes the list external to the ART job itself and manipulates a base .fcl file)
was deemed "undesirable" at the time because it adds complication to both production and user
initiated jobs; but that decision could be revisited by ThePowersThatBe.  !
!

F l u x F i l e P r i m e r ! A N e u t r i n o P h y s i c i s t ’ s Vi e w !

�4

http://linux.die.net/man/3/glob
http://root.cern.ch/root/html/TSystem.html#TSystem:GetPathInfo@2
http://linux.die.net/man/3/stat

Representative File Samples!
Currently the most interesting file samples are those that represent the NOvA-era target in the
nominal position with the nominal (forward, i.e. +200) horn current. But other configurations
produce different size files for the same number protons-on-target (POTs). Normal flugg/g4n-
umi files represent 500,000 POTs. !

!
set target pull-

back
horn
current

cuts format # files total size
(MB)

n1 NOvA (mn) 0 200 lowth flugg 968 160771

n2 NOvA (mn) 0 -200 lowth flugg 968 156881

n3 MINOS (le) 10 185 lowth flugg 200 78290

NOvA (me) 0 200 ? g4mnv 500 96049

NOVA (me) 0 -200 ? g4mnv 500 88012

NOvA (mn) 0 200 nova-fd gsimple 100 14277

NOvA (mn) 0 -200 nova-fd gsimple 100 12013

NOvA (mn) 0 200 nova-nd gsimple 200 37104

NOvA (mn) 0 -200 nova-nd gsimple 100 30692

NOvA (mn) 0 200 nova-ndrock gsimple 100 17101

NOvA (mn) 0 -200 nova-ndrock gsimple 100 13960

F l u x F i l e P r i m e r ! A N e u t r i n o P h y s i c i s t ’ s Vi e w !

�5

Bibliography  
Author Last Name, First Name. “Book Title or Reference
Title.” City: Publisher, Date.!

blah!

Representation of times and dates http://en.wikipedi-
a.org/wiki/ISO_8601!

!

F l u x F i l e P r i m e r ! A N e u t r i n o P h y s i c i s t ’ s Vi e w !

�6

http://en.wikipedia.org/wiki/ISO_8601

